ADICHUNCHANAGIRI UNIVERSITY

18EC32

Third Semester BE Degree Examination March 2021 (CBCS Scheme)

Time: 3 Hours Max Marks: 100 marks

Sub: Analog Electronics

O P Code: 62302

Instructions: 1. Answer **five full** questions.

- 2. Choose one full question from each module.
- 3. Your answer should be specific to the questions asked.
- 4. write the same question numbers as they appear in this question paper
- 5. Write Legibly

Module – 1

Compare the characteristics of CB,CC and CE configuration with necessary circuits and 10 marks 1 represent them in re model.

What is transistor biasing? Explain the fixed bias circuit with relevant equations and circuit

10 marks

Or

Derive an expression for Av,Zi, Zo for emitter follower circuit using re model. 2

10 marks

Determine the values of R1 and Rc for voltage divider bias circuit with Vcc=20V, R2=22 $K\Omega$, $R_E=1$ $K\Omega$ and $I_C=2.5$ mA

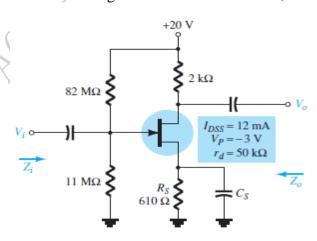
10 marks

Module – 2

Explain low frequency response of FET amplifier and derive an expression for cut off 3 frequencies defined by input and output circuits.

10 marks

Determine the lower cut off frequency for the FET amplifier using the following parameters $C_G=0.01\mu F, C_C=0.5 \mu F, C_S=2 \mu F Rsig=10K\Omega, R_G=1M\Omega, R_D=4.7K\Omega, Rs=1K\Omega, R_L=2.2K\Omega,$ I_{DSS} =8mA, V_{p} =-4 v_{r_d} = $\infty \Omega$, V_{DD} =20V, V_{GSO} =-2V, I_{DO} =2mA


10 marks

Derive an expression for Zi and Zo, Av for common gate configuration for JFET. 4

10 marks

For JFET voltage divider bias calculate Zi, Zo and Av and also find Vo if Vi=25mV(rms)

10 marks

Module-3

5	a	Consider common drain amplifier circuit with gm=1m A/V and ro=150 K Ω let Rsig=1 M Ω and R _L =15 K Ω find Rin, Rout ,Av and Gv	10 marks	
	b	From small signal operation of an amplifier derive an expression for DC bias point, signal current in Drain terminal (i_D) , voltage gain and trans conductance \mathbf{Or}	10 marks	
6	a	Explain CS amplifier with necessary circuit and equations with and without source resistance	10 marks	
	b	Explain the different types of internal capacitances in MOSFET and explain the gate capacitive effect.	10 marks	
Module – 4				
7	a	For a voltage series feedback amplifier topology. Obtain an expression for Av, Rif and Rof.	10 marks	
	b	A crystal oscillator has L=0.334H, C=0.065pF, C_M =1pF,R=5.5K Ω calculate its series and parallel resonating frequency and find Q of the crystal	10 marks	
		Or		
8	a	Briefly explain Barkhausen criterion for oscillations and explain RC phase shift oscillator with necessary circuit and equations	10 marks	
	b	With neat circuit diagram explain the operation of BJT colpitts oscillator.	10 marks	
Module – 5				
9	a	With neat circuit diagram, explain the operation of a transformer coupled class A power amplifier.	10 marks	
	b	Derive an expression for second harmonic distortion in power amplifier using 3-point method.	10 marks	
	Or			
10	a	With neat circuit diagram explain the operation of a class B push pull power amplifier and derive its conversion efficiency	10 marks	
	b	Briefly explain series voltage regulator and shunt voltage regulator with necessary block diagrams. *****	10 marks	